Nanoscale Fluorescence Microscopy Using Carbon Nanotubes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic force microscopy using fabricated cobalt-coated carbon nanotubes probes

Magnetic force microscope ( MFM ) is a powerful technique for mapping the magnetic force gradient above the sample surface. Herein, single-wall carbon nanotubes (SWCNT) were used to fabricate MFM probe by dielectrophoresis method which is a reproducible and cost-effective technique. The effect of induced voltage on the deposition manner of carbon nanotubes (CNT) on the atomic force microscope (...

متن کامل

magnetic force microscopy using fabricated cobalt-coated carbon nanotubes probes

magnetic force microscope ( mfm ) is a powerful technique for mapping the magnetic force gradient above the sample surface. herein, single-wall carbon nanotubes (swcnt) were used to fabricate mfm probe by dielectrophoresis method which is a reproducible and cost-effective technique. the effect of induced voltage on the deposition manner of carbon nanotubes (cnt) on the atomic force microscope (...

متن کامل

Nanoscale resolution fluorescence microscopy using electromagnetically induced transparency

It is well known that, by using the nonlinear interaction between atoms and laser beams, one can localize atoms to a spot much smaller than the wavelength of light. In their pioneering work, Thomas and colleagues have suggested and experimentally demonstrated subwavelength position localization of atoms using spatially varying energy shifts 1–3 . If a very small object is embedded into an atomi...

متن کامل

Concepts for nanoscale resolution in fluorescence microscopy.

Spatio-temporal visualization of cellular structures by fluorescence microscopy has become indispensable in biology. However, the resolution of conventional fluorescence microscopy is limited by diffraction to about 180 nm in the focal plane and to about 500 nm along the optic axis. Recently, concepts have emerged that overcome the diffraction resolution barrier fundamentally. Formed on the bas...

متن کامل

Nanoscale atomic waveguides with suspended carbon nanotubes

We propose an experimentally viable setup for the realization of one-dimensional ultracold atom gases in a nanoscale magnetic waveguide formed by single doubly-clamped suspended carbon nanotubes. We show that all common decoherence and atom loss mechanisms are small guaranteeing a stable operation of the trap. Since the extremely large current densities in carbon nanotubes are spatially homogen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Journal of Selected Topics in Quantum Electronics

سال: 2008

ISSN: 1077-260X

DOI: 10.1109/jstqe.2007.912914